Giải toán lớp 6 – Bài 7 – Lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số – Luyện tập

Bài Tập 61 Trang 28 SGK

Đề bài 

Trong các số sau, số nào là lũy thừa của một số tự nhiên với số mũ lớn hơn 1 (chú ý rằng có những số có nhiều cách viết dưới dạng lũy thừa):

8, 16, 20, 27, 60, 64, 81, 90, 100

Bài giải 

Để biết được các số trên có mũ lớn hơn 1 hay không ta cần phân tích xem số đó tồn tại bao nhiêu số mũ nha.

\dpi{100} \small 8 = 2.2.2 = 2^{3}

\dpi{100} \small 16 = 4.4 = 4^{2}  hoặc  \dpi{100} \small 16 = 2.2.2.2 = 2^{4}

20 không phải là luỹ thừa của bất kỳ số tự nhiên nào.

\dpi{100} \small 27 = 3.3.3 = 3^{3}

60 không phải là luỹ thừa của bất kỳ số tự nhiên nào.

\dpi{100} \small 64 = 8.8 = 8^{2}

\dpi{100} \small 81 = 9.9 = 9^{^{2}}

90 không phải là luỹ thừa của bất kỳ số tự nhiên nào.

\dpi{100} \small 100 = 10.10 =10 ^{2}

Vậy những số là luỹ thừa một số tự nhiên là

8, 16, 27, 64, 81, 100

Bài Tập 62 Trang 28 SGK

Đề bài 

Tính :

câu a ) \dpi{100} \small 10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6}

Câu b ) Viết mỗi số sau dưới dạng lũy thừa của 10:

1.000;    1.000.000;    1 tỉ;      100…..0( 12 số 0)

Bài giải 

Với luỹ thừa số 10, 100 hay nhiều số 0 hơn thì 1 số 0 tương đương với 1 số mũ.

\dpi{100} \small 10^{2} = 10.10 = 100

\dpi{100} \small 10^{3} = 10^{2}.10 = 100.10 = 1000

\dpi{100} \small 10^{4} = 10^{3}.10 = 1000.10 = 10000

\dpi{100} \small 10^{5} = 10^{4}.10 = 10000.10 = 100000

\dpi{100} \small 10^{6} = 10^{5}.10 = 100000.10 = 10000000

Câu b )

Viết luỹ thừa dưới dạng cơ số 10

\dpi{100} \small 1000 = 10^{3}

\dpi{100} \small 1 000 000 = 10^{6}

1 TỈ = \dpi{100} \small 1 000 000 000 = 10^{9}

100….0 ( 12 số 0)  = \dpi{100} \small 10^{12}

Lúc đầu bài mình có nói qua là cứ 1 con số 0 là một số mũ, vì vậy 12 số 0 thì số mũ sẽ bằng 12.

Bài Tập 63 Trang 28 SGK

Để bài 

Điền dấu “X” vào ô thích hợp:

Câu Đúng Sai
\dpi{100} \small a) 2^{3}.2^{2} = 2^{6}
\dpi{100} \small b ) 2^{3}.2^{2} = 2^{5}
\dpi{100} \small c ) 5^{4}.5 = 5^{4}

 

 

 

 

Bài giải 

Áp dụng công thức sau :

\dpi{100} \small a^{m}.a^{n} = a^{m + n}

Câu a ) Đây là phép tính sai vì \dpi{100} \small 2^{3}.2^{2} = 2^{3 + 2} = 2^{5}

Câu b ) Đây là đáp án đúng

Câu c ) là một đáp án sai vì

\dpi{100} \small 5^{4}.5 = 5^{4 + 1} = 5^{5}

Bây giờ tiến hành điền kết quả đúng – sai vào ô trống

Câu Đúng Sai
\dpi{100} \small a ) 2^{3}.3^{2} = 2^{6} X
\dpi{100} \small b) 2^{3}.2^{2} = 2^{5} X
\dpi{100} \small c ) 5^{4}.5 = 5^{4} X

Bài Tập 64 Trang 29 SGK

Đề bài 

Viết kết quả phép tính dưới dạng một lũy thừa:

\dpi{100} \small a ) 2^{3}.2^{2}.2^{4}      \dpi{100} \small b ) 10^{2}.10^{3}.10^{5}      \dpi{100} \small c ) x.x^{5}       \dpi{100} \small d ) a^{3}.a^{2}.a^{5}

Bài giải 

Câu a

\dpi{100} \small 2^{3}.2^{2}.2^{4} = 2^{3+2+4} = 2^{9}

Câu b )

\dpi{100} \small 10^{2}.10^{3}.10^{5} = 10^{2 + 3+5} = 10^{10}

Câu c )

\dpi{100} \small x.x^{5} = x^{1 + 5} = x^{6}

Câu d )

\dpi{100} \small a^{3}.a^{2}.a^{5} = a^{3 +2+5} = a^{10}

Bài Tập 65 Trang 29 SGK

Đề bài

Bằng cách tính, em hãy cho biết số nào lớn hơn trong hai số sau?

\dpi{100} \small a ) 2^{3}  và \dpi{100} \small 3^{2}    \dpi{100} \small b ) a^{4}  và \dpi{100} \small 4^{2}     \dpi{100} \small c ) 2^{5}  và \dpi{100} \small 5^{2}   \dpi{100} \small d ) 2^{10}  và  \dpi{100} \small 100

Bài giải

Với dạng bài tập này mình phải phân tích mũ xem số nào có giá trị lơn hơn.

Câu a

\dpi{100} \small 2^{3} = 2.2.2 = 8   \dpi{100} \small , 3^{2} = 3.3 = 9

\dpi{100} \small 8 < 9 = >2 ^{3} < 3^{2}

Câu b

\dpi{100} \small 2^{4} = 2.2.2.2 = 16, 4^{2} = 4.4 = 16

\dpi{100} \small 16 = 16 => 2^{4} = 4^{2}

Câu c

\dpi{100} \small 2^{5} = 32, 5^{2} = 25

\dpi{100} \small 32 > 25 => 2^{5} > 5^{2}

Câu d

\dpi{100} \small 2^{10} = 1024 > 100 => 2^{10} > 100

Bài Tập 66 Trang 29 SGK

Đề bài 

Đố. Ta biết 11² = 121, 111² = 12 321

Hãy dự đoán 1111² bằng bao nhiêu? Kiểm tra lại dự đoán đó.

Bài giải 

Từ 2 ví dụ mà đề bài cho ta thấy quyy luật số chính giữa sẽ tăng và giảm dần 1 đơn vị ở số cuối như trường hợp 11² thì số 2 là số tăng.

Còn 111² = thì số 3 là số tăng và giảm dần xuống 2 và 1

Tương tự vậy số 1111² = 1234321 

Việc kiểm tra có thể sử dụng máy tính bỏ túi và thấy kết quả như quy luật mà ta đã làm.

Xem lại bài 7 Lũy thừa cơ số mũ tự nhiên – nhân hai lũy thừa cùng cơ số

Tiểu học Asked on 4 Tháng Năm, 2018 in Giải toán.
Thêm bình luận
  • 0 Trả lời
  • Câu trả lời của bạn

    Khi tham gia trả lời bạn phải đồng ý với các điều khoản trên web site của chúng tôi: privacy policy and terms of service.